Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.009
Filtrar
1.
Crit Care ; 28(1): 123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627763

RESUMO

BACKGROUND: To perform a systematic review with meta-analysis with the dual intent of assessing the impact of attaining aggressive vs. conservative beta-lactams PK/PD target on the clinical efficacy for treating Gram-negative infections in critical patients, and of identifying predictive factors of failure in attaining aggressive PK/PD targets. METHODS: Two authors independently searched PubMed-MEDLINE and Scopus database from inception to 23rd December 2023, to retrieve studies comparing the impact of attaining aggressive vs. conservative PK/PD targets on clinical efficacy of beta-lactams. Independent predictive factors of failure in attaining aggressive PK/PD targets were also assessed. Aggressive PK/PD target was considered a100%fT>4xMIC, and clinical cure rate was selected as primary outcome. Meta-analysis was performed by pooling odds ratios (ORs) extrapolated from studies providing adjustment for confounders using a random-effects model with inverse variance method. RESULTS: A total of 20,364 articles were screened, and 21 observational studies were included in the meta-analysis (N = 4833; 2193 aggressive vs. 2640 conservative PK/PD target). Attaining aggressive PK/PD target was significantly associated with higher clinical cure rate (OR 1.69; 95% CI 1.15-2.49) and lower risk of beta-lactam resistance development (OR 0.06; 95% CI 0.01-0.29). Male gender, body mass index > 30 kg/m2, augmented renal clearance and MIC above the clinical breakpoint emerged as significant independent predictors of failure in attaining aggressive PK/PD targets, whereas prolonged/continuous infusion administration of beta-lactams resulted as protective factor. The risk of bias was moderate in 19 studies and severe in the other 2. CONCLUSIONS: Attaining aggressive beta-lactams PK/PD targets provided significant clinical benefits in critical patients. Our analysis could be useful to stratify patients at high-risk of failure in attaining aggressive PK/PD targets.


Assuntos
Antibacterianos , beta-Lactamas , Humanos , Masculino , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estado Terminal/terapia , Resultado do Tratamento , Infusões Intravenosas
2.
Acta Pharm ; 74(1): 37-59, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554382

RESUMO

A diastereomeric mixture of racemic 3-phthalimido-b-lactam 2a/2b was synthesized by the Staudinger reaction of carboxylic acid activated with 2-chloro-1-methylpyridinium iodide and imine 1. The amino group at the C3 position of the b-lactam ring was used for further structural upgrade. trans-b-lactam ureas 4a-t were prepared by the condensation reaction of the amino group of b-lactam ring with various aromatic and aliphatic isocyanates. Antimicrobial activity of compounds 4a-t was evaluated in vitro and neither antibacterial nor antifungal activity were observed. Several of the newly synthesized trans-b-lactam ureas 4a-c, 4f, 4h, 4n, 4o, 4p, and 4s were evaluated for in vitro antiproliferative activity against liver hepatocellular carcinoma (HepG2), ovarian carcinoma (A2780), breast adenocarcinoma (MCF7) and untransformed human fibroblasts (HFF1). The b-lactam urea 4o showed the most potent antiproliferative activity against the ovarian carcinoma (A2780) cell line. Compounds 4o and 4p exhibited strong cytotoxic effects against human non-tumor cell line HFF1. The b-lactam ureas 4a-t were estimated to be soluble and membrane permeable, moderately lipophilic molecules (logP 4.6) with a predisposition to be CYP3A4 and P-glycoprotein substrates. The tools PASS and SwissTargetPrediction could not predict biological targets for compounds 4a-t with high probability, pointing to the novelty of their structure. Considering low toxicity risk, molecules 4a and 4f can be selected as the most promising candidates for further structure modifications.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Ovarianas , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/farmacologia , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células
3.
J Am Chem Soc ; 146(11): 7708-7722, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457782

RESUMO

Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the ß-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic ß-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.


Assuntos
Sideróforos , beta-Lactamas , Sideróforos/farmacologia , beta-Lactamas/farmacologia , Lactamas , Antibacterianos/farmacologia , Enterobactina/farmacologia , Enterobactina/metabolismo , Bactérias Gram-Negativas , Ferro
4.
ACS Infect Dis ; 10(4): 1267-1285, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442370

RESUMO

The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Quinolinas , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Sinergismo Farmacológico , Anti-Infecciosos/farmacologia , Quinolinas/farmacologia
5.
ACS Infect Dis ; 10(4): 1298-1311, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446051

RESUMO

Effective treatment of gonorrhea is threatened by the increasing prevalence of Neisseria gonorrhoeae strains resistant to the extended-spectrum cephalosporins (ESCs). Recently, we demonstrated the promise of the third-generation cephalosporin cefoperazone as an antigonococcal agent due to its rapid second-order rate of acylation against penicillin-binding protein 2 (PBP2) from the ESC-resistant strain H041 and robust antimicrobial activity against H041. Noting the presence of a ureido moiety in cefoperazone, we evaluated a subset of structurally similar ureido ß-lactams, including piperacillin, azlocillin, and mezlocillin, for activity against PBP2 from H041 using biochemical and structural analyses. We found that the ureidopenicillin piperacillin has a second-order rate of acylation against PBP2 that is 12-fold higher than cefoperazone and 85-fold higher than ceftriaxone and a lower MIC against H041 than ceftriaxone. Surprisingly, the affinity of ureidopenicillins for PBP2 is minimal, indicating that their inhibitory potency is due to a higher rate of the acylation step of the reaction compared to cephalosporins. Enhanced acylation results from the combination of a penam scaffold with a 2,3-dioxopiperazine-containing R1 group. Crystal structures show that the ureido ß-lactams overcome the effects of resistance mutations present in PBP2 from H041 by eliciting conformational changes that are hindered when PBP2 interacts with the weaker inhibitor ceftriaxone. Overall, our results support the potential of piperacillin as a treatment for gonorrhea and provide a framework for the future design of ß-lactams with improved activity against ESC-resistant N. gonorrhoeae.


Assuntos
Ceftriaxona , Gonorreia , Humanos , Ceftriaxona/metabolismo , Ceftriaxona/farmacologia , Neisseria gonorrhoeae/genética , Gonorreia/tratamento farmacológico , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Cefoperazona/farmacologia , Cefalosporinas/farmacologia , Cefalosporinas/metabolismo , Piperacilina/metabolismo , Piperacilina/farmacologia , beta-Lactamas/farmacologia
6.
Microbiome ; 12(1): 50, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468305

RESUMO

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the ß-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of ß-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the ß-lactamase activity of the microbiota. The level of ß-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous ß-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Resiliência Psicológica , Adulto , Humanos , Microbioma Gastrointestinal/genética , beta-Lactamases/genética , beta-Lactamas/farmacologia , Voluntários Saudáveis , Antibacterianos , Bactérias/genética , Fezes/microbiologia
7.
Biophys Chem ; 309: 107228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552402

RESUMO

ß-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of ß-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the ß-lactam ring, is the major mechanism for bacterial resistance to ß-lactams. In particular, among class A, B, C and D ß-lactamases, metallo-ß-lactamases (MBLs, class B ß-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat ß-lactamase-mediated resistance, great efforts have been made to develop ß-lactamase inhibitors that restore the activity of ß-lactams. Some ß-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-ß-lactamases (SBLs, class A, C, and D ß-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of ß-lactamase and mechanisms by which ß-lactam antibiotics are inactivated, but also the research finding on ß-lactamase inhibitors targeting these enzymes. These detailed information on ß-lactamases and their inhibitors could give valuable information for novel ß-lactamase inhibitors design.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamases , Resistência Microbiana a Medicamentos
8.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329330

RESUMO

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Doripenem , Ágar , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Penicilinas , Ácido Clavulânico/farmacologia , Imipenem/farmacologia , Água , Testes de Sensibilidade Microbiana
9.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349162

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Assuntos
Endocardite Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Cefuroxima/farmacologia , Bicarbonatos/farmacologia , Staphylococcus aureus , beta-Lactamas/farmacologia , Endocardite Bacteriana/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
10.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366392

RESUMO

The evolutionary relationship between the biofilm lifestyle and antibiotic resistance enzymes remains a subject of limited understanding. Here, we investigate how ß-lactamases affect biofilm formation in Vibrio cholerae and how selection for a biofilm lifestyle impacts the evolution of these enzymes. Genetically diverse ß-lactamases expressed in V. cholerae displayed a strong inhibitory effect on biofilm production. To understand how natural evolution affects this antagonistic pleiotropy, we randomly mutagenized a ß-lactamase and selected for elevated biofilm formation. Our results revealed that biofilm evolution selects for ß-lactamase variants able to hydrolyze ß-lactams without inhibiting biofilms. Mutational analysis of evolved variants demonstrated that restoration of biofilm development was achieved either independently of enzymatic function or by actively leveraging enzymatic activity. Taken together, the biofilm lifestyle can impose a profound selective pressure on antimicrobial resistance enzymes. Shedding light on such evolutionary interplays is of importance to understand the factors driving antimicrobial resistance.


Assuntos
Anti-Infecciosos , Vibrio cholerae , beta-Lactamases/genética , Biofilmes , Vibrio cholerae/genética , beta-Lactamas/farmacologia , Anti-Infecciosos/farmacologia
11.
ACS Biomater Sci Eng ; 10(3): 1461-1472, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38315631

RESUMO

The presence of ß-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how ß-lactamase positive microorganisms can neutralize the effect of ß-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of ß-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that ß-lactamase positive bacteria can neutralize the cytotoxic effect of ß-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using ß-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of ß-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.


Assuntos
Antibacterianos , Ecossistema , Antibacterianos/química , beta-Lactamases/química , beta-Lactamas/farmacologia , beta-Lactamas/química , Monobactamas , Bactérias , 60693
12.
PLoS One ; 19(2): e0297921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315668

RESUMO

For the first time since 2015, the World Health Organization's (WHO) global Antimicrobial Resistance and Use Surveillance (GLASS) featured both global reports for antimicrobial resistance (AMR) and antimicrobial consumption (AMC) data in its annual reports. In this study we investigated the relationship of AMR with AMC within participating countries reported in the GLASS 2022 report. Our analysis found a statistically significant correlation between beta-lactam/cephalosporin and fluoroquinolones consumption and AMR to these antimicrobials associated with bloodstream E. coli and Klebsiella pneumoniae among the participating countries (P<0.05). We observed that for every 1 unit increase in defined daily dose DDD of beta-lactam/cephalosporins and quinolone consumptions among the countries, increased the recoveries of bloodstream-associated beta-lactam/cephalosporins-resistant E. coli/Klebsiella spp. by 11-22% and quinolone-resistant E. coli/Klebsiella spp. by 31-40%. When we compared the antimicrobial consumptions between the antimicrobial ATC (Alphanumeric codes developed by WHO) groups and countries, we observed a statistically significant higher daily consumption of beta-lactam-penicillins (J01C, DDD difference range: 5.23-8.13) and cephalosporins (J01D, DDD difference range: 2.57-5.13) compared to other antimicrobial groups among the countries (adjusted for multiple comparisons using Tukey's method). Between the participating countries, we observed a statistically significant higher daily consumption of antimicrobial groups in Iran (DDD difference range: 3.63-4.84) and Uganda (DDD difference range: 3.79-5.01) compared to other participating countries (adjusted for multiple comparisons using Tukey's method). Understanding AMC and how it relates to AMR at the global scale is critical in the global AMR policy development and implementation of global antimicrobial stewardship.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Cefalosporinas/farmacologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , beta-Lactamas/farmacologia , Klebsiella
13.
Antimicrob Agents Chemother ; 68(4): e0158623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411952

RESUMO

Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1ß secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1ß secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Etambutol/farmacologia , Etambutol/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Ácido Clavulânico/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose/microbiologia , Carbapenêmicos/farmacologia , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Testes de Sensibilidade Microbiana
14.
J Antimicrob Chemother ; 79(4): 722-757, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334389

RESUMO

BACKGROUND: Managing drug-food interactions may help to achieve the optimal action and safety profile of ß-lactam antibiotics. METHODS: We conducted a systematic review with meta-analyses in adherence to PRISMA guidelines for 32 ß-lactams. We included 166 studies assessing the impact of food, beverages, antacids or mineral supplements on the pharmacokinetic (PK) parameters or PK/pharmacodynamic (PK/PD) indices. RESULTS: Eighteen of 25 ß-lactams for which data on food impact were available had clinically important interactions. We observed the highest negative influence of food (AUC or Cmax decreased by >40%) for ampicillin, cefaclor (immediate-release formulations), cefroxadine, cefradine, cloxacillin, oxacillin, penicillin V (liquid formulations and tablets) and sultamicillin, whereas the highest positive influence (AUC or Cmax increased by >45%) for cefditoren pivoxil, cefuroxime and tebipenem pivoxil (extended-release tablets). Significantly lower bioavailability in the presence of antacids or mineral supplements occurred for 4 of 13 analysed ß-lactams, with the highest negative impact for cefdinir (with iron salts) and moderate for cefpodoxime proxetil (with antacids). Data on beverage impact were limited to 11 antibiotics. With milk, the extent of absorption was decreased by >40% for cefalexin, cefradine, penicillin G and penicillin V, whereas it was moderately increased for cefuroxime. No significant interaction occurred with cranberry juice for two tested drugs (amoxicillin and cefaclor). CONCLUSIONS: Factors such as physicochemical features of antibiotics, drug formulation, type of intervention, and patient's health state may influence interactions. Due to the poor actuality and diverse methodology of included studies and unproportionate data availability for individual drugs, we judged the quality of evidence as low.


Assuntos
Cefaclor , 60693 , Humanos , Cefaclor/farmacocinética , Cefuroxima/farmacologia , Penicilina V/farmacologia , Cefradina/farmacologia , Disponibilidade Biológica , Antiácidos , Streptococcus pneumoniae , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Monobactamas/farmacologia , Minerais/farmacologia , Testes de Sensibilidade Microbiana
15.
J Antibiot (Tokyo) ; 77(3): 185-188, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38177698

RESUMO

Antimicrobial resistance (AMR) causes a global health threat and enormous damage for humans. Among them, Methicillin-resistant Staphylococcus aureus (MRSA) resistant to first-line therapeutic ß-lactam drugs such as meropenem (MEPM) is problematic. Therefore, we focus on combination drug therapy and have been seeking new potentiators of MEPM to combat MRSA. In this paper, we report the isolation of phomoidrides A-D and its new analog, phomoidride H along with a polyketide compound, oxasetin from the culture broth of Neovaginatispora clematidis FKI-8547 strain as potentiators of MEPM against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pirróis , Humanos , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Naftalenos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana
16.
Lancet Microbe ; 5(2): e142-e150, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219757

RESUMO

BACKGROUND: The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection. METHODS: We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254). Defined daily dose (DDD) data from the European Centre for Disease Prevention and Control (retrieved on Sept 21, 2021) for major antibiotic classes (ß-lactam, tetracycline, macrolide, sulfonamide, quinolone, and non-penicillin ß-lactam) were used together with sequence typing, resistance profiling, regression analysis, and non-neutral Wright-Fisher simulation-based modelling to enable systematic comparison of resistance levels, clone success, and antibiotic usage between the UK and Norway. FINDINGS: Sequence type (ST)73, ST131, ST95, and ST69 accounted for 892 (49·3%) of 1808 isolates in the BSAC collection. In the UK, the proportion of ST69 increased between 2001-10 and 2011-17 (p=0·0004), whereas the proportions of ST73 and ST95 did not vary between periods. ST131 expanded quickly after its emergence in 2003 and its prevalence remained consistent throughout the study period (apart from a brief decrease in 2009-10). The extended-spectrum ß-lactamase (ESBL)-carrying, globally disseminated MDR clone ST131-C2 showed overall greater success in the UK (154 [56·8%] of 271 isolates in 2003-17) compared with Norway (51 [18·3%] of 278 isolates in 2002-17; p<0·0001). DDD data indicated higher total use of antimicrobials in the UK, driven mainly by the class of non-penicillin ß-lactams, which were used between 2·7-times and 5·1-times more in the UK per annum (ratio mean 3·7 [SD 0·8]). This difference was associated with the higher success of the MDR clone ST131-C2 (pseudo-R2 69·1%). A non-neutral Wright-Fisher model replicated the observed expansion of non-MDR and MDR sequence types under higher DDD regimes. INTERPRETATION: Our study indicates that resistance profiles of contemporaneously successful clones can vary substantially, warranting caution in the interpretation of correlations between aggregate measures of resistance and antibiotic usage. Our study further suggests that in countries with low-to-moderate use of antibiotics, such as the UK and Norway, the extent of non-penicillin ß-lactam use modulates rather than determines the success of widely disseminated MDR ESBL-carrying E coli clones. Detailed understanding of underlying causal drivers of success is important for improved control of resistant pathogens. FUNDING: Trond Mohn Foundation, Marie Sklodowska-Curie Actions, European Research Council, Royal Society, and Wellcome Trust.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos de Coortes , beta-Lactamases/genética , beta-Lactamases/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Genômica , beta-Lactamas/farmacologia
17.
Microbiol Spectr ; 12(2): e0350723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179941

RESUMO

Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the ß-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.


Assuntos
Anti-Infecciosos , Gonorreia , Humanos , Neisseria , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Neisseria gonorrhoeae/genética , Gonorreia/tratamento farmacológico , Anti-Infecciosos/farmacologia , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana , Penicilinas
18.
Chem Biodivers ; 21(2): e202301745, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192127

RESUMO

Many people around the world suffer from malaria, especially in tropical or subtropical regions. While malaria medications have shown success in treating malaria, there is still a problem with resistance to these drugs. Herein, we designed and synthesized some structurally novel benzotriazole-ß-lactams using 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid as a key intermediate. To synthesize the target molecules, the ketene-imine cycloaddition reaction was employed. First, The reaction of 1H-benzo[d][1,2,3]triazole with 2-bromoacetic acid in aqueous sodium hydroxide yielded 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid. Then, the treatment of 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid with tosyl chloride, triethyl amine, and Schiff base provided new ß-lactams in good to moderate yields.The formation of all cycloadducts was confirmed by elemental analysis, FT-IR, NMR and mass spectral data. Moreover, X-ray crystallography was used to determine the relative stereochemistry of 4a compound. The in vitro antimalarial activity test was conducted for each compound against P. falciparum K1. The IC50 values ranged from 5.56 to 25.65 µM. A cytotoxicity profile of the compounds at 200 µM final concentration revealed suitable selectivity of the compounds for malaria treatment. Furthermore, the docking study was carried out for each compound into the P. falciparum dihydrofolate reductase enzyme (PfDHFR) binding site to analyze their possible binding orientation in the active site.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/química , Simulação de Acoplamento Molecular , beta-Lactamas/farmacologia , beta-Lactamas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/química , Acetatos , Relação Estrutura-Atividade
19.
Org Lett ; 26(3): 692-696, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38227548

RESUMO

New gem-difluoroalkenes were synthesized by the dehydrofluorination of the corresponding 4-CF3-ß-lactams. An unexpected rearrangement mechanism of the ester moiety dependent on a stabilizing negative charge was observed. Hydrogenation to 4-CHF2-ß-lactams was successful from gem-difluoro-ß-lactams.


Assuntos
Antibacterianos , beta-Lactamas , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Hidrogenação , Ésteres
20.
J Gen Appl Microbiol ; 69(4): 234-238, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37302827

RESUMO

Six aromatic secondary metabolites, pestalone (1), emodin (2), phomopsilactone (3), pestalachlorides B (4), C (5), and D (6), were isolated from Pestalotiopsis sp. FKR-0115, a filamentous fungus collected from white moulds growing on dead branches in Minami Daito Island. The efficacy of these secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA) with and without meropenem (ß-lactam antibiotic) was evaluated using the paper disc method and broth microdilution method. The chemical structures of the isolated compounds (1-6) were characterised using spectroscopic methods, including nuclear magnetic resonance and mass spectrometry. All six isolated compounds exhibited synergistic activity with meropenem against MRSA. Among the six secondary metabolites, pestalone (1) overcame bacterial resistance in MRSA to the greatest extent.


Assuntos
Benzofenonas , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Antibacterianos/farmacologia , Meropeném/metabolismo , Meropeném/farmacologia , Pestalotiopsis , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Resistência beta-Lactâmica , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...